
Sliding Shapes for 3D Object Detection in Depth Images

Shuran Song Jianxiong Xiao

Princeton University
Supplemental material

In this supplementary material, we first explain some details of the algorithm in
Section 1, and then talk about the data used for training and testing in Section 2. We
present more results in Section 3.

1 Algorithm Details

Identifying out of sight, missing depth cell, and occlusion source depth As is dis-
cussed in the paper, it is important to identify cells that are out of sight, occluded by
other objects or having vast missing depth, and then set their features to zeros so that
they do not bias the overall detection score. The way we identify these cells is the fol-
lowing: similar to TSDF feature computation, after each cell is divided into a 6× 6× 6
voxel grid, we project cell center’s 3D location (xc, yc, zc) onto 2D image plane. If one
cell has more than one voxel falls outside the image boundary, it is flagged as out of
sight.

Otherwise, we round the voxel center positions into pixel coordinate and read the
corresponding depth value D from the depth map. If D is missing, the voxel will be
treated as missing as well. If more than 90% voxels of a cell are missing, the whole cell
is treated as missing, and its features will be set to zeros.

For a threshold value µ, if yc < D − µ, the voxel is in front of a surface (this is
possible because yc is the average depth). If D − µ < yc < D + µ, the voxel is on a
surface. If yc > D + µ, the voxel is behind a surface thus occluded. If more than 90%
voxels of a cell are occluded, the whole cell is treated as occluded, and the median of
D over all voxels in this cell is stored as the depth of the occlusion source. At testing
time, if the depth of occlusion source is smaller than the sliding windows minimum
depth, then the occluder must be in front of the sliding box, thus we treat it as inter-
object occlusion and set features of that cell to zero, otherwise the occluder is inside the
window, implying self-occlusion and we do not change its feature, since we model this
via rendering.

For out of sight, occluded or missing cells, after setting their features to zeros, we
also append an extra bit flagging these special conditions to the end of feature vector,
enabling SVM to learn a bias term.

Local Search We denote the camera is located at (0, 0, 0), the CG model is rendered
at (xm, ym, zm) and it has size of (wm, dm, hm) in meters. Then given a point cloud,
to make the detector more robust, we only slide the windows on boxes whose center
(x, y, z) is near the rendering position of the CG model, i.e., x ∈ [xm−1.5×wm, xm+
1.5×wm], y ∈ [ym−1.5×dm, ym+1.5×dm], z ∈ [zm−1.5×hm, zm+1.5×hm].

2 Shuran Song and Jianxiong Xiao

Gravity Gravity
Z

XY

Fig. 1. Gravity alignment for the point cloud.

We further restrict the searching range with its relative location to the camera, such
that the visibility of object surfaces is not dramatically changed.

If the model is rendered to the left of the camera, i.e. xm < 0, the search range
should not be on far right, so we require x < 0.5wm; if xm >= 0, then x > −0.5wm.
Similarly for the height, if ym < 0, y < 0 + 0.5hm, if ym >= 0, y > 0− 0.5hm.

2 Data Details

In this section we provide more details on our training and testing data, as well as the
ground truth labeling and classification.

Gravity direction Our algorithm takes an RGB-D image with the gravity direction as
input. Aligning the point cloud and CG model with the gravity direction enables the
axis-aligned sliding window for detection. The gravity direction can be obtained via
many ways. For example, if a RGB-D camera is mounted on a robot, we know the
robot’s configuration and its camera tilt angle. For the cameras on the mobile device,
like the cell phone we can use the accelerometer to obtain the gravity direction and
camera’s relative tilt angle during capturing. For this paper, the gravity direction for
the RMRC data is provided. For dataset without ground truth gravity direction, it is not
difficult to compute by fitting planes to the floor and walls. Fig. 1 shows the original
point cloud and the point cloud with −z axis aligned to gravity direction.

Depth refinement Raw depth image captured by Kinect has many missing values. To
refine the depth, the RMRC data set uses the code from [1] to obtain a better depth map,
integrating from other frames. The refinement step uses TSDF to voxelize the space
and accumulate depth value from neighboring frames. After that, we use ray casting to
obtain the refined depth map for the original camera pose. We define the neighboring
frames to be frames at most 10 frames apart from current frame, so their time difference
is less than a second, and the depth map can still be treated as a single image.

Sliding Shapes for 3D Object Detection in Depth Images 3

Fig. 2. All CAD models we used to train our sliding shape detector for the three category: chair,
bed, and toilet

RGB-D ground truth We find that there are many inaccurate labeling in the ground
truth of RMRC data [2, 3] , and many object categories contain a very small number of
instances. Therefore, we only chose three categories that have more instances, namely
chair, toilet, and bed, to evaluate our algorithm, and manually corrected all annotation
mistakes in their ground truth labeling.

To better analyze the behavior of different algorithms, same as PASCAL VOC [4],
we identify the difficult cases. We further divide these boxes into 3 types: out of sight,
heavy occlusion and vast missing depth. The detailed criteria for such division is as
follow:

Out of sight: Each 3D ground truth box is projected to 2D (denoted as B2D). Then
we define ratio Rin = area(I∩B2D)

area(B2D) , where I is the 2D image. If Rin < 0.5, the ground
truth box will be labelled as out of sight.

Heavy occlusion: We define occlusion ratio of a projected ground truth bounding
box B2D as Rocc = ||{x∈B2D∩dx<Dmin}||

||{x∈∩B2D}|| , where Dmin is the minimal depth value of
the 3D ground truth bounding box, dx is the depth value of the 2D pixel x, and |S| is
the cardinality of set S. If Rocc > 0.5, the ground truth box will be labelled as heavily
occlusion.

Vast missing depth : The missing ratio is defined asRmiss =
||{x∈B2D∩dx is missing}||

||{x∈∩B2D}|| .
If Rmiss > 0.6, the ground truth box will be labelled as vast missing depth.

Ground truth boxes not labelled by above criteria are defined as normal and are
included in the 2D and 3D evaluation. All ground truth labelled as out of sight, heavy
occlusion or vast missing depth are regarded as difficult cases and are only included in
the 2D+ and 3D+ evaluation.

CAD models Fig. 2 shows all CAD models we used to train our sliding shape detector
for the three categories, which are downloaded from google warehouse.

RGB-D statisitics To bridge the gap between CAD models and RGB-D image, we
want to render the CAD models so that it represents the typical locations, sizes, and
viewpoints in the RGB-D domain. Therefore, using the RGB-D training set, we obtain
the statistics for object locations related to the camera (Fig. 3), object heights (Fig. 4),

4 Shuran Song and Jianxiong Xiao

1

2

3

4

5

6

0
to

 6
m

−4 −3 −2 −1 0 1 2 3 4 5
−5 m to 5 m

(a) chair

1

2

3

4

5

6

0
to

 6
m

−4 −3 −2 −1 0 1 2 3 4 5
−5 m to 5 m

(b) toilet

−4 −3 −2 −1 0 1 2 3 4 5

1

2

3

4

5

6

0
to

 6
m

−5 m to 5 m

(c) bed

Fig. 3. Top view of the location distribution of different category in RMRC training set.

0.4 0.6 0.8 1 1.2 1.4 1.60

50

100

150

200

250

300

meter
Height

(a) chair

0.4 0.5 0.6 0.7 0.8 0.90

2

4

6

8

10

12

14

16

meter
Height

(b) toilet

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

meter
Height

(c) bed

Fig. 4. Height distribution of different category in RMRC training set.

−40 −30 −20 −10 0 10
0

50

100

150

200

250

300

camera tilt angle (degree)

(a) camera tilt

0 1 2 3 4
0

200

400

600

800

camera height (meter)

(b) camera height

Fig. 5. Camera tilt angle distribution in RMRC training set.

camera tilt angle and camera height (Fig. 5). And we render the CAD models using the
modes of these distributions.

3 More Results

For testing, it takes about 2 second per detector to test on an RGB-D image using Mat-
lab. The computation is naturally parallelizable except the non-maximal suppression at
the end of detection. For training, it takes 4 to 8 hours to train a single detector with
single thread in Matlab. But again, the training is naturally parallelizable, and can be
easily done using Amazon EC2. In our case, we use a cluster with 500 CPU cores.

More results and quantatative comparison between Sliding Shape (ours), DPM, and
Kinect (our algorithm trained on Kinect data) is shown in Fig. 6, 7 and 8. We set the

Sliding Shapes for 3D Object Detection in Depth Images 5

threshold on their detection scores so that different algorithms have the same recall
on 2D+ or 3D+ ground truth. The recall threshold is set to be 0.2 for chair, 0.5 for
toilet and 0.25 for bed. In general detectors has a higher recall for toilet than chair and
bed. The thickness of the bounding box is proportion to the detection score (thicker
box indicates higher score). The results demonstrate that under the same recall, Sliding
Shape detector achieves much higher precision. Note that DPM fails when the image is
too dark or there is background clutter.

Sliding Shape DPM Kinect Sliding Shape DPM Kinect

Fig. 6. Comparision for toilet detectors.

6 Shuran Song and Jianxiong Xiao

Sliding Shape DPM Kinect Sliding Shape DPM Kinect

Fig. 7. Comparision for chair detectors.

Sliding Shapes for 3D Object Detection in Depth Images 7

Sliding Shape DPM Kinect Sliding Shape DPM Kinect

Fig. 8. Comparision for bed detectors.

8 Shuran Song and Jianxiong Xiao

References

1. Xiao, J., Owens, A., Torralba, A.: SUN3D: A database of big spaces reconstructed using sfm
and object labels. In: ICCV. (2013)

2. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and support inference
from rgbd images. In: ECCV. (2012)

3. Guo, R., Hoiem, D.: Support surface prediction in indoor scenes. In: ICCV. (2013)
4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual

object classes (voc) challenge. (2010)

